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Abstract: Object oriented design is a template to solve a problem that can be used in many different applications. For 

the design of a new application, a large amount of code can be reused by the existing design patterns. Therefore, it 

becomes necessary to identify the similar design structures. One of the frequently used algorithms for finding identical 

structures is Markov Clustering (MCL), that works well when the clusters are small in diameter, but for large clusters, 

there is a possibility that the weakly connected components may overlap. To remove overlapping, authors adopted and 

modified the existing MCL approach and thus proposed the new graph partitioning approach named as Unfolding and 

Boosting-based Graph Partitioning Algorithm (UB-GPA), that will result in an inconsistent set of uni-class clusters. 
The algorithm interprets the clusters/partitions by an iterative process of unfolding and boosting operations. 

Experimental results show that the proposed UB-GPA performs well as compared with MCL. 
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I. INTRODUCTION 

 

Software systems are hard to comprehend the functionality 

of the large systems because systems are implemented 

with concepts of object oriented programming. Software 

systems are more difficult to extend and modify them. So, 
large and complex software systems tend to break into 

small components that are easier to understand by a 

software developer or designer.  

The concept of breaking a large software system into small 

components can be achieved through clustering. 

Clustering is a useful and important unsupervised learning 

technique widely studied in the literature [1-3].The 

universal goal of clustering is to group similar objects into 

one cluster while partitioning dissimilar objects into 

different clusters. Clustering has broad applications 

including the analysis of biological data, financial data, 

time series data and spatial data soon. 
 

Graph as an expressive data structure is widely used to 

model a structural relationship between objects in many 

application domains such as the web, social networks, 

biological networks and fraud detection, etc. Graph 
clustering is an interesting and challenging research 

problem which has received much attention recently [4] 

Clustering on a large graph aims to partition the graph into 

several densely connected components. Typical 

applications of graph clustering include community 

detection in social networks, identification of functionally 

related protein modules in large protein-protein interaction 

networks, etc [5]. 

Software clustering is an imperative facility to decompose 

a current system into smaller parts. It serves to identify the 

subsystems that are related functionally and are someway 
independent of the other part of the system. Therefore, the 

procedure of reverse engineering a software system must 

identify the clusters that represent the system. The usual  

 

 

reason for reverse engineering a piece of software is to 

restructure the program, to build something similar to it, to 

exploit its weaknesses or strengthen its defences. 

Object oriented domain an essential principal, which is 
also a golden rule in designing reusable software, is that of 

modularity. A module in a software system is a single unit 

of the application design. Each module is embodied with a 

small number of classes that are strongly coupled. 

Modules must have a simple interface through which they 

can interrelate with each other modules. Likewise, the 

coupling between modules should be loose in order to 

maintain their autonomy.  
 

In this paper, we propose a new graph partitioning 

approach for partitioning an object-oriented software 

system. By considering a few features of Markov 

clustering, a new graph partitioning approach is 

implemented. Markov clustering is successfully applied in 

the fields of bioinformatics, biological networks, 

community detection in graphs etc, where vertices form 

groups with a higher density of edge weights within a 
group and lower density edge weights between the groups. 

As the static software model graph of object-oriented 

software display small-world behavior and community 

structure, authors proposed the application of new graph 

partitioning algorithm for software clustering. The 

algorithm can work on undirected weighted graphs and it 

is observed that the new algorithm considerable advantage 

over spectral partitioning and Markov Clustering (MLC) 

algorithms. In our approach, we first create the undirected 

weighted graph of software, where vertices graph is 

classes, abstracts and interfaces, and the edge represents 
relations between the entities. Then we apply the 

Unfolding and Boosting based Graph Partitioning 

algorithm (UB-GPA) to find partitions in software. The 
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approach is evaluated on three hypothetical software 

systems from [6-7]. We compared the results obtained by 
proposed approach with existing spectral partitioning 

algorithm is found to be same and UB-GPA achieved a 

substantial performance over object oriented software 

clustering. 

 

II. RELATED WORK 

 

In this related work, describes the graph clustering 

methods and how the graph clustering techniques are 

playing a role in software engineering and different data 

transformation techniques. 
The graph clustering is mainly done in two ways first one 

is between graphs and another one is within a graph. 

Between a graph clustering approaches split a set of 

graphs into various clusters. For example, chemical 

compounds structures can be assembled into clusters based 

on their structural similarity. Within a graph, clustering 

methods split the nodes of a graph into clusters. For 

example, in social networking graphs can be clustered 

based on their similar activities or institutions etc.  

This literature gives different algorithms to perform 

within-graph clustering methods such as a k-Spanning 

tree, Shared Nearest Neighbor, Betweenness Centrality 
Based, Highly Connected Components, Maximal Clique 

Enumerations, Kernel k-means, Spectral partitions and 

Markov Clustering. 
 

Several techniques and approaches for software clustering 

are introduced in the study. Shtern et al. presented a 

review article on clustering methodologies for software 

engineering. Authors described each phase of clustering 

algorithms separately and important approaches for 
evaluating the effectiveness of software clustering [8]. 

Hierarchical clustering algorithms are two categories: 

agglomerative is a bottom-up approach and divisive is a 

top-down approach. The agglomerative algorithm starts 

from the bottom of the hierarchy by iteratively grouping 

similar entities into clusters. At each step, the two clusters 

that are most similar to each other are merged, and the 

number of clusters is reduced by one. Divisive algorithms 

start with one cluster that contains all entities and divide 

the cluster into a number (usually two) of separate clusters 

at each successive step. 

Czibula et al. presented a new hierarchical agglomerative 
clustering algorithm utilized for object-oriented software 

systems restructuring [9]. This methodology aims at 

identifying a partition of a software system that 

corresponds to an improved structure of it. Hierarchical 

Agglomerative clustering algorithm for Restructuring 

Software systems (HARS) can be used in the grouping 

step of Clustering Approach for Refactoring 

Determination (CARD) in order to re-group entities from 

the software system. This methodology can be useful for 

assisting software engineers in their daily works of 

refactoring software systems. They evaluated using the 
open source JHotDraw (i.e. a java GUI framework for 

technical and structured graphics) emphasizing its 

advantages in comparison with existing approaches. 

Spectral graph partitioning methods first appeared in the 

early seventies in research work of [10-12]. They explored 
the properties of the algebraic representations of the 

graphs and introduced the idea of using eigenvectors for 

partitioning the graph. These methods have been applied 

to many research disciplines, related to computer science 

and electrical engineering. Hendrickson et al., [13] used 

Spectral Graph Partitioning in parallel systems. Pothen et 

al. [14] and Bernard et al. [15] used similar techniques in 

scientific computing. This Spectral partitioning is still 

using and providing better partitions, but it having 

somewhat complex calculations is required to perform 

partitions. 
 

Xanthos proposed a spectral graph partitioning method to 

decompose the object-oriented software system [6]. The 

methodology is based on an iterative process for 

partitioning the graph in order to identify dense 

communities of classes thereby minimizing the 

communication between the modules of the system. This 

is achieved because it finds the minimum cut set of edges 

in each iteration. Therefore, it can also be utilized to 

identify the modules that should be assigned in diverse 
machines, in a distributed environment. 

Dongen suggested a Markov Cluster (MCL) Algorithm 

[16] that involves changing the values of a transition 

matrix towards either 0 or 1 at every progression in a 

random walk until the stochastic conditions are satisfied. 

When the Hadamard power [17] for each transition 

probability value is divided by the sum of each column, 

the rescaling procedure yields a transition matrix for the 

next stage. After repeating alternatively for around 20 

times between two stages random walk and probability 

modification, the procedure will, at last, achieve a 
convergence stage in which the whole graph is subdivided 

into a set of „hard‟ clusters. The benefits of the algorithm 

are (i) it is not misled by edges linking different clusters; 

(ii) it scales well with increasing graph size; (iii) it has a 

natural parameter for influencing cluster granularity. The 

limitations of the algorithm are (i) it cannot find 

overlapping clusters (ii) it is not suitable for clusters with a 

large diameter.   

Han et al. described normalization which is one of the data 

transformation methods in data preprocessing [18]. An 

attribute of a dataset is normalized by scaling its value so 

that they fall within a small range, such as 0.0 to 1.0. 
Normalization may improve the accuracy and efficiency of 

mining algorithms in classification and clustering. There 

are numerous methods for data normalization that include 

min-max normalization, z-score normalization and 

normalization by decimal scaling. 

 

III. PROPOSED APPROACH 

 

The proposed approach consists of two phases. In the first 

phase complete graph model of the software design is built 

by extracting software entities (i.e. classes, abstracts, and 
interfaces) and relations directly from source code. The 

model graph obtained is a directed weighted graph. These 

graphs are regenerated as undirected weighted graph by 
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removing the directions of the edges. In second phase 

software clusters are generated from the graph produced in 
the first phase. Authors have suggested a new graph 

partitioning algorithm by adopting few features of MCL 

algorithm. In this algorithm symmetric matrix M is formed 

by combining adjacency matrix and degree matrix of G. 

The Min-Max normalization technique is applied to matrix 

M for transforming the data to a specified small range. The 

algorithm consists of two main operations namely 

unfolding and boosting which are implemented on the 

normalized matrix. These operations are repeated 

alternatively until stable steady matrix is reached. Finally 

the clusters are interpreted from stable matrix S (i, j), 
where 1 ≤ i ≤ n, 1 ≤ j ≤ n, and n is number of vertices. For 

the rows having the value one, the corresponding j indices 

are taken into one group called cluster. Thus in this way 

the clustering are interpreted from the stable matrix. Fig. 1 

shows the block diagram of the proposed approach UB-

GPA and Fig. 2 depicts the UB-GPA flow. 

 

Fig.1 Block Diagram for Proposed approach UB-GPA 

 

 
Fig.2 Flow of the UB-GPA Algorithm 

 

A. Phase 1: Developing of Class-Oriented Model Graph 

The developed software model graph is a simple directed 

weighted graph. Essential information such as system 
entities and associations are directly extracted from C# 

source code by parsing the abstract syntax [19]. The 

vertices of the generated graph are classes, abstract and 

interface. The edges are the associations between the 

entities. Association types in the graph are based on 

associations of UML class diagrams. Normally there can 

be more than one association between entities (classes, 

abstracts, interfaces). Therefore to create a simple graph 
all the parallel edges are merged into one single edge. The 

feasible association types between classes are (i) Extend 

association X, where Class B is the base class of Class A, 

(ii) Implement association I, where Class A implements 

the interface of class B, (iii) Field type association A, 

where Class A has a field type of Class B, (iv) Local 

variable association L, where Class A method has a local 

parameter with the type of Class B, (v) Parameter 

association P, where Class A method has an input 

parameter with the type of Class B, (vi) Return type 

association R, where Class A has a method with the return 
type of Class B, (vii) Method association M, where Class 

A has a method calls to Class B. 

An object-oriented system can be represented as a digraph 

G (V, E, Lv, Le, v, e) where V is a set of vertices (classes), 

E is a set of edges (associations), Lv is a set of labels for 

vertices, Le is a set of labels for edges. v is a mapping from 

V→ Lv, e is a mapping from E→ Le Assigning weights to 

edges according to their strengths of the associations will 

improve the performance of the approach and enhance the 

quality of the detection results by reducing the ratio of the 

false positive detections. 

The obtained software model graph is directed weighted 
graph. In this paper, authors propose a new graph 

partitioning algorithm approach that supports undirected 

graphs. So, the obtained directed weighted graph is 

regenerated as the undirected weighted graph by removing 

the directions of the edges. Fig.3 shows the creation of 

undirected weighted software model graph with parallel 

edges and without parallel edges (i.e. if any subgraph 

contain XY and Y X then it considered as the XY 

and combining their edge weights). 

 

 
Fig.3 Creation of undirected weighted software model 

graph 
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B. Phase 2: Generating clusters by unfolding and boosting 

operations 
The input for the second phase is an undirected weighted 

graph G, unfold parameter „m‟ and boost parameter „b‟. 

From the input graph G, an adjacency matrix A is created 

and is represented as A= [aij], where aij is the weight of the 

edge eij.  Degree matrix D of G is found, which is 

represented as D= [dij] and is defined as 

 

dij =  
 aik

n
k=1     if i = j

0               otherwise
                                      (1) 

 

From adjacency matrix not possible to find proper clusters, 

because the node value (i.e. M(1, 1), M(2, 2), ..) are zero 

in the matrix. Degree matrix provides information of the 

node which helps to get proper clusters. Adjacency and 

Degree matrix of G are combined to obtain the symmetric 

matrix M. 
The resultant symmetric matrix M is normalized by Min-

max normalization technique for transforming the data to a 

specified small range. The Min-max normalization maps a 

value 𝑣 to 𝑣′ in the range [𝑛𝑒𝑤_𝑚𝑖𝑛𝐴 , 𝑛𝑒𝑤_𝑚𝑎𝑥𝐴] for the 

attribute A, by computing  

 

𝑣 ′ =
𝑃

𝑄
∗ [𝑛𝑒𝑤_𝑚𝑎𝑥𝐴 − 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴] + 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴         (2) 

 

Where P= [v-minimum value of A] and Q= [maximum 

value of A-minimum value of A] 
 

In the proposed approach the minimum and the maximum 

value of the column of a matrix M is taken and the new 

range for the matrix is defined from [0, 1]. Thus the above 

equation for the matrix M (i, j) can be written as  

 

𝑣′ =
𝑋

𝑌
∗  𝑛𝑒𝑤−𝑟𝑎𝑛𝑔𝑒_𝑚𝑎𝑥 − 𝑛𝑒𝑤−𝑟𝑎𝑛𝑔𝑒_𝑚𝑖𝑛 +

 𝑛𝑒𝑤_𝑟𝑎𝑛𝑔𝑒_𝑚𝑖𝑛                                                   (3) 
 

Where X = [v-min value of jth column], Y= [max value of 

jth column – min value of jth column] and 1≤ j≤ n, n is 

number of vertices 
 

After normalizing the matrix two main operations, namely 

unfolding and boosting are applied. These operations are 

repeated iteratively until a convergence is reached i.e. until 

a stable matrix is reached.  

The Unfolding matrix MU is achieved via matrix squaring 

and is defined as 

 

MU=𝑀𝑖𝑗
′ =  𝑀𝑖𝑘𝑀𝑘𝑗

𝑚
𝑘=1                                              (4) 

 

Where, m is an integer taken as 2. Clusters of large size 
are formed with the higher value of m. This may lead to a 

single cluster with no partitions and lower value of m (i.e. 

m=1) may lead to the problem of multiplication. Therefore 

m value is considered as 2. 
 

The boosting is achieved by element square of the unfold 

matrix 𝑀′   and element squared matrix is normalized. The 

boosting operation on the present state is responsible for 

both strengthening due to element squaring and weakening 

due to normalizing. Therefore to control the extent of the 
strengthening / weakening, boosting parameter b is 

considered. The low boosting parameter is more prone to 

yield smooth partitions. 

 

MB=𝑀𝑖𝑗
′′ =

( 𝑀𝑖𝑗
′ )𝑏

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
                                             (5) 

 

Where, b is an integer value taken as 2.  
 

The unfolding and boosting operations are iteratively 

repeated until it results in a stable state matrix. The stable 

matrix is identified by comparing the result matrix 

obtained and the previously result obtained are to be same 

then it says that stable matrix is arise. Finally the clusters 

are interpreted from stable matrix S (i, j), where 1≤ i ≤ n 

and 1≤ j ≤ n, n is a number of vertices. For the rows 

having the value one, the corresponding j indices are taken 

into one group called a cluster. Thus in this way the 

clusters are interpreted from the stable matrix. The key 

benefits of the proposed UB-GPA algorithm are (i) Its 
formulation is simple and elegant. (ii) It needs less < 20 

number of iteration to produce a stable state. (iii) It 

produces good clustering results and (iv) this approach is 

applicable to detect the community structures in the dense 

network. Illustration of the proposed UB-GPA algorithm: 

Let us consider an undirected weighted graph shown in 

Fig.4, which is an input for UB-GPA algorithm.  

 

 
Fig.4. Undirected weighted graph 

 
Initially an adjacency matrix A and degree matrix D for 

the input graph are created. The symmetric matrix M is 

obtained by combining an adjacency matrix A and Degree 

matrix D as shown below  

 

A= 

 
 
 
 
 
 
 
0 1 3 1 0 0 0
1 0 1 1 1 0 0
3 1 0 0 0 0 0
1 1 0 0 0 0 0
0 1 0 0 0 1 1
0 0 0 0 1 0 0
0 0 0 0 1 0 0 

 
 
 
 
 
 

      

 

D= 

 
 
 
 
 
 
 
5 0 0 0 0 0 0
0 4 0 0 0 0 0
0 0 4 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1 
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M= 

 
 
 
 
 
 
 
5 1 3 1 0 0 0
1 4 1 1 1 0 0
3 1 4 0 0 0 0
1 1 0 2 0 0 0
0 1 0 0 3 1 1
0 0 0 0 1 1 0
0 0 0 0 1 0 1 

 
 
 
 
 
 

 

 

The obtained matrix M is n× n symmetric matrix, which is 

normalized within the new range between [0, 1] by using 

min -max normalization method. The min max 

normalization computation is done by using equation 3.  

 

From the matrix M, first column elements are [5, 1, 3, 1, 0, 

0, 0], where the maximum value is 3 and minimum value 

is 0. The value of M (1, 1) i.e. 3 is normalized to ((5-0) / 
(5-0)) * (1-0) + 0 = 1 and the value of M (2, 1) i.e. 1 is 

normalized to ((1-0) / (5-0)) * (1-0) + 0 = 0.33. 

 

Similarly computing for entire matrix, normalized matrix 

MN is  

 

 
 
 
 
 
 
 
1.00 0.25 0.75 050 0.00 0.00 0.00
0.20 1.00 0.25 0.50 0.33 0.00 0.00
0.60 0.25 1.00 0.00 0.00 0.00 0.00
0.20 0.25 0.00 1.00 0.00 0.00 0.00
0.00 0.25 0.00 0.00 1.00 1.00 1.00
0.00 0.00 0.00 0.00 0.33 1.00 0.00
0.00 0.00 0.00 0.00 0.33 0.00 1.00 

 
 
 
 
 
 

 

 
On normalized matrix, unfold and boosting operations are 

applied. The unfold operation is a simple matrix squaring 

(i.e. MN × MN). Thus the unfold matrix MU is   

 

 
 
 
 
 
 
 
1.60 0.81 1.56 1.13 0.08 0.00 0.00
0.65 1.32 0.65 1.10 0.67 0.33 0.33
1.25 0.65 1.51 0.43 0.08 0.00 0.00
0.45 0.55 0.21 1.23 0.08 0.00 0.00
0.05 0.50 0.06 0.13 1.75 2.00 2.00
0.00 0.08 0.00 0.00 0.67 1.33 0.33
0.00 0.08 0.00 0.00 0.67 0.33 1.33 

 
 
 
 
 
 

 

 

The boosting operation is the matrix element squaring, 

illustrating by taking the square of the first column 

element of MU, that results with the values (5.19, 1.36, 
3.16, 0.60, 0.01, 0, 0). Squaring is done for the remaining 

columns of matrix MU resulting in a matrix as shown 

below.  

 

 
 
 
 
 
 
 
2.56 0.66 2.44 1.27 0.01 0.00 0.00
0.42 1.74 0.42 1.21 0.44 0.11 0.11
1.56 0.42 2.29 0.18 0.01 0.00 0.00
0.20 0.30 0.05 1.50 0.01 0.00 0.00
0.00 0.25 0.00 0.02 3.06 4.00 4.00
0.00 0.01 0.00 0.00 0.44 1.78 0.11
0.00 0.01 0.00 0.00 0.44 0.11 1.78 

 
 
 
 
 
 

 

 

Boosting matrix MB is obtained by using again the same 

min-max normalization method. Thus the resultant 
Boosting Matrix MB is   

 
 
 
 
 
 
 
1.00 0.38 1.00 0.84 0.00 0.00 0.00
0.16 1.00 0.17 0.81 0.14 0.03 0.03
0.61 0.24 0.94 0.12 0.00 0.00 0.00
0.08 0.17 0.02 1.00 0.00 0.00 0.00
0.00 0.14 0.00 0.01 1.00 1.00 1.00
0.00 0.00 0.00 0.00 0.14 0.44 0.03
0.00 0.00 0.00 0.00 0.14 0.03 0.44 

 
 
 
 
 
 

 

 

The unfolding and boosting operations are repeated 

alternatively on matrix MB until the matrix gets a stable 

state. Finally a stable matrix MS is obtained as  
 

         A   B   C   D    E    F   G 

MS = 

 
 
 
 
 
 
 
1 1 1 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0 

 
 
 
 
 
 

 

 
From the matrix MS the partitions are interpreted by 

finding the number of ones in a row and combining the 

corresponding indices into one group. Vertices A, B, C, D 

are considered as one group or one partition, since all the 

ones in the first row of MS correspond to the indices A, B, 

C, D. Similarly vertices E, F, G belong to another group 

forming partition 2 which was depicted in Figure 5.  

 

 
Fig. 5 Interpreted graph partitions from stable matrix 

 

Algorithm:  Unfolding and Boosting Graph Partitioning 

Algorithm (UB-GPA) 
 

Input: Software model graph G, unfolding parameter „𝑚‟, 

boosting parameter „𝑏‟ 

Output: Software partitions 
 

Step 1: Create an adjacency matrix A of G 
Step 2: Find the degree of the matrix D of G 

Step 3: Combine the adjacency and degree matrix to form   

a symmetric matrix M i.e. M = D+A  

Step 4: The symmetric Matrix M is normalized MN using 

min-max normalization technique. 

Step 5: Apply simple matrix multiplication MN×MN to 

obtain unfolding matrix MU. 

Step 6: Apply element squaring for obtain unfolding 

matrix and min-max normalization for the element squared 

matrix to obtain boosting matrix MB. 

Step 7: Repeat step 4 and step 5 until a stable state matrix 
MS is obtained.  

Step 8: Finding the number of ones in a row and combine 

all the indices into one group to form a cluster from stable 

matrix generated in step 7. 
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IV. RESULTS AND DISCUSSION 

 
In the result analysis, three different software model 

graphs are considered (Chatzigeorgiou et al., 2006; 

Xanthos, 2006). Table 1 gives the descriptive information 

about experimented software systems. In particular, first 

column shows different software model graphs. The 

second and third columns show the number of vertices and 

edges in the undirected graph (i.e. software model graph).   

 

TABLE I DESCRIPTION OF THE SOFTWARE MODEL GRAPH 

 

Software graph data |V| |E| 

Software model graph 1 10 10 

Software model graph 2 12 12 

Software model graph 3 12 17 

 

For each software model graph, the experimental analysis 
is done with three different approaches namely proposed 

UB-GPA, MCL Algorithm and spectral partitioning 

algorithm.  Spectral partitioning algorithm is used in the 

experimental analysis of UB-GPA to show that the results 

obtain by the proposed UB-GPA are same as obtained by 

Spectral partitioning algorithm. 

 

Fig.3 illustrates an example for UB-GPA, it takes 12 

iterations to get stable state matrix, whereas MCL 

algorithm requires 9 iterations. MCL require less iteration 

count but having an overlapping of clusters. The proposed 

approach needs 3 more iterations to get stable matrix when 
comparing with the MCL. Here spectral partitioning 

algorithm is considered for justification of the obtained 

output is true for the UB-GPA algorithm.       

  

Results of software model graph 1: 

It is observed that software model graph 1 is partitioned 

into three clusters with the disconnected edges are 7-3 

with weight 2 and 7-8 with weight 3.  

 

 
Fig.5 Partitions of software model graph 1 a) UB-GPA 

Algorithm b) MCL Algorithm c) Spectral partitioning 

algorithm 

There is no overlapping of clusters in all the three 

algorithms. The results of software model graph 1 are 
shown in Fig.5. 

 

Results of software model graph 2: 

It is observed that software model graph 2 is partitioned 

into three clusters with the disconnected edges are 1-9 

with weight 2 , 1-3 with weight 3 and 1-5 with weight 1. 

There is no overlapping of clusters in UB-GPA algorithm 

and Spectral partitioning algorithm.  In MCL algorithm 

there is an overlapping of cluster1 and cluster 3 with 

vertex 9. The result of software model graph 2 is shown in 

Fig.6. 
 

 
Fig.6 Partitions of software model graph 2 a) UB-GPA 

Algorithm b) MCL Algorithm c) Spectral partitioning 

algorithm 
 

Results of software model graph 3: 

It is observed that software model graph 3 is partitioned 

into two clusters with the disconnected edges are 6-7 with 

weight 1 and 2-7 with weight 1. There is no overlapping of 

clusters in UB-GPA algorithm and Spectral partitioning 

algorithm.  In MCL algorithm there is an overlapping of 

cluster1 and cluster 2 with vertices 7, 8 and 9. The result 

of software model graph 3 is shown in Fig.7. The 

summary table can be viewed in Table II. 

 

 
Fig.7 Partitions of software model graph 3 a) UB-GPA 

Algorithm b) MCL Algorithm c) Spectral partitioning 

algorithm 

 

 

 

TABLE III SUMMARY TABLE OF THE RESULT 

 

Hypothetical 

graph data 

UB-GPA Algorithm MCL Algorithm 
Spectral partitioning 
Algorithm 

Partitions 
Over 

Lapping 
Partitions 

Over 

lapping 
Partitions 

Over 

lapping 

Software 

model graph 1 

P 1 {1, 2, 3,4 } 

P 2 {5,6,7} 

P 3 {8,9,10 } 

No 

P 1 {1, 2, 3,4 } 

P 2 {5,6,7} 

P 3 {8,9,10 } 

No 

P 1 {1, 2, 3,4 } 

P 2 {5,6,7} 

P 3 {8,9,10 } 

No 
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Software 

model graph 2 

P 1{1,2,3} 

P 2 {4,5,6,7,8 } 

P 3 {9,10,11,12 } 

No 

P 1 {1, 2, 3, 9 } 

P 2 {4,5,6,7,8 } 

P 3 {9,10,11,12 } 

Yes 

P 1{1,2,3 } 

P 2{4,5,6,7,8 } 

P 3 {9,10,11,12 } 

No 

Software 
model graph 3 

P 1 {1,2,3,4,5,6 } 

P2  { 7,8,9,10,11, 
12} 

No 

P 1 {1, 2, 3, 4, 5, 6, 7, 

8 ,9 } 
P 2 { 7,8,9,10,11, 12} 

Yes 

P 1 {1,2,3,4,5,6 } 

P2  { 7, 8, 9,10, 
11, 12} 

No 

V. CONCLUSION 

 

In this paper, a new graph partitioning approach is 
suggested namely Unfolding and Boosting- based Graph 

Partitioning algorithm (UB-GPA). The main objective is 

to implement UB-GPA algorithm to provide the best 

partitions for an object oriented system. This can be 

achieved by two main operations, one is simple matrix 

multiplication is called unfolding and another one is 

squaring the elements of the unfold matrix and 

normalizing the element squared matrix to the range [0, 1]. 

These operations are repeated alternatively to achieve a 

stable matrix state to form clusters. The suggested UB-

GPA algorithm was examined on three different software 
model graphs. The stable matrix is occurred with low 

iterations while comparing with MCL algorithm iterations 

and it is observed that the suggested UB-GPA algorithm 

does not produce any overlapping groups/partitions. The 

results obtained were compared with existing spectral 

partitioning algorithm and are found to be same. Authors 

would like to come up with real time applications and find 

an optimal solution for software systems. 
 

The outcome of UB-GPA algorithm can have multiple 
uses. 1) The partitions that are found can be utilized as 

reverse engineering process of the software system. 2) The 

partitions can be used for identification of design patterns. 

3) The identified design patterns are transfer easily and 

utilized it in another system (reusability). 4) The partitions 

can show some design structures like common structures, 

copy past structures and circular dependency structures. 
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