
IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 7, July 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3724 122

Unfolding and Boosting based Graph Partitioning

Approach for Object-Oriented System

Appala Srinuvasu Muttipati
1
, Padmaja Poosapati

2

Research Scholar, Department of Computer Science and Engineering, GITAM University, Visakhapatnam, India1

Associate Professor, Department of Information Technology, GITAM University, Visakhapatnam, India2

Abstract: Object oriented design is a template to solve a problem that can be used in many different applications. For

the design of a new application, a large amount of code can be reused by the existing design patterns. Therefore, it

becomes necessary to identify the similar design structures. One of the frequently used algorithms for finding identical

structures is Markov Clustering (MCL), that works well when the clusters are small in diameter, but for large clusters,

there is a possibility that the weakly connected components may overlap. To remove overlapping, authors adopted and

modified the existing MCL approach and thus proposed the new graph partitioning approach named as Unfolding and

Boosting-based Graph Partitioning Algorithm (UB-GPA), that will result in an inconsistent set of uni-class clusters.
The algorithm interprets the clusters/partitions by an iterative process of unfolding and boosting operations.

Experimental results show that the proposed UB-GPA performs well as compared with MCL.

Keywords: software design models; reusability; identical design structures; software clustering; graph partitioning.

I. INTRODUCTION

Software systems are hard to comprehend the functionality

of the large systems because systems are implemented

with concepts of object oriented programming. Software

systems are more difficult to extend and modify them. So,
large and complex software systems tend to break into

small components that are easier to understand by a

software developer or designer.

The concept of breaking a large software system into small

components can be achieved through clustering.

Clustering is a useful and important unsupervised learning

technique widely studied in the literature [1-3].The

universal goal of clustering is to group similar objects into

one cluster while partitioning dissimilar objects into

different clusters. Clustering has broad applications

including the analysis of biological data, financial data,

time series data and spatial data soon.

Graph as an expressive data structure is widely used to

model a structural relationship between objects in many

application domains such as the web, social networks,

biological networks and fraud detection, etc. Graph
clustering is an interesting and challenging research

problem which has received much attention recently [4]

Clustering on a large graph aims to partition the graph into

several densely connected components. Typical

applications of graph clustering include community

detection in social networks, identification of functionally

related protein modules in large protein-protein interaction

networks, etc [5].

Software clustering is an imperative facility to decompose

a current system into smaller parts. It serves to identify the

subsystems that are related functionally and are someway
independent of the other part of the system. Therefore, the

procedure of reverse engineering a software system must

identify the clusters that represent the system. The usual

reason for reverse engineering a piece of software is to

restructure the program, to build something similar to it, to

exploit its weaknesses or strengthen its defences.

Object oriented domain an essential principal, which is
also a golden rule in designing reusable software, is that of

modularity. A module in a software system is a single unit

of the application design. Each module is embodied with a

small number of classes that are strongly coupled.

Modules must have a simple interface through which they

can interrelate with each other modules. Likewise, the

coupling between modules should be loose in order to

maintain their autonomy.

In this paper, we propose a new graph partitioning

approach for partitioning an object-oriented software

system. By considering a few features of Markov

clustering, a new graph partitioning approach is

implemented. Markov clustering is successfully applied in

the fields of bioinformatics, biological networks,

community detection in graphs etc, where vertices form

groups with a higher density of edge weights within a
group and lower density edge weights between the groups.

As the static software model graph of object-oriented

software display small-world behavior and community

structure, authors proposed the application of new graph

partitioning algorithm for software clustering. The

algorithm can work on undirected weighted graphs and it

is observed that the new algorithm considerable advantage

over spectral partitioning and Markov Clustering (MLC)

algorithms. In our approach, we first create the undirected

weighted graph of software, where vertices graph is

classes, abstracts and interfaces, and the edge represents
relations between the entities. Then we apply the

Unfolding and Boosting based Graph Partitioning

algorithm (UB-GPA) to find partitions in software. The

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 7, July 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3724 123

approach is evaluated on three hypothetical software

systems from [6-7]. We compared the results obtained by
proposed approach with existing spectral partitioning

algorithm is found to be same and UB-GPA achieved a

substantial performance over object oriented software

clustering.

II. RELATED WORK

In this related work, describes the graph clustering

methods and how the graph clustering techniques are

playing a role in software engineering and different data

transformation techniques.
The graph clustering is mainly done in two ways first one

is between graphs and another one is within a graph.

Between a graph clustering approaches split a set of

graphs into various clusters. For example, chemical

compounds structures can be assembled into clusters based

on their structural similarity. Within a graph, clustering

methods split the nodes of a graph into clusters. For

example, in social networking graphs can be clustered

based on their similar activities or institutions etc.

This literature gives different algorithms to perform

within-graph clustering methods such as a k-Spanning

tree, Shared Nearest Neighbor, Betweenness Centrality
Based, Highly Connected Components, Maximal Clique

Enumerations, Kernel k-means, Spectral partitions and

Markov Clustering.

Several techniques and approaches for software clustering

are introduced in the study. Shtern et al. presented a

review article on clustering methodologies for software

engineering. Authors described each phase of clustering

algorithms separately and important approaches for
evaluating the effectiveness of software clustering [8].

Hierarchical clustering algorithms are two categories:

agglomerative is a bottom-up approach and divisive is a

top-down approach. The agglomerative algorithm starts

from the bottom of the hierarchy by iteratively grouping

similar entities into clusters. At each step, the two clusters

that are most similar to each other are merged, and the

number of clusters is reduced by one. Divisive algorithms

start with one cluster that contains all entities and divide

the cluster into a number (usually two) of separate clusters

at each successive step.

Czibula et al. presented a new hierarchical agglomerative
clustering algorithm utilized for object-oriented software

systems restructuring [9]. This methodology aims at

identifying a partition of a software system that

corresponds to an improved structure of it. Hierarchical

Agglomerative clustering algorithm for Restructuring

Software systems (HARS) can be used in the grouping

step of Clustering Approach for Refactoring

Determination (CARD) in order to re-group entities from

the software system. This methodology can be useful for

assisting software engineers in their daily works of

refactoring software systems. They evaluated using the
open source JHotDraw (i.e. a java GUI framework for

technical and structured graphics) emphasizing its

advantages in comparison with existing approaches.

Spectral graph partitioning methods first appeared in the

early seventies in research work of [10-12]. They explored
the properties of the algebraic representations of the

graphs and introduced the idea of using eigenvectors for

partitioning the graph. These methods have been applied

to many research disciplines, related to computer science

and electrical engineering. Hendrickson et al., [13] used

Spectral Graph Partitioning in parallel systems. Pothen et

al. [14] and Bernard et al. [15] used similar techniques in

scientific computing. This Spectral partitioning is still

using and providing better partitions, but it having

somewhat complex calculations is required to perform

partitions.

Xanthos proposed a spectral graph partitioning method to

decompose the object-oriented software system [6]. The

methodology is based on an iterative process for

partitioning the graph in order to identify dense

communities of classes thereby minimizing the

communication between the modules of the system. This

is achieved because it finds the minimum cut set of edges

in each iteration. Therefore, it can also be utilized to

identify the modules that should be assigned in diverse
machines, in a distributed environment.

Dongen suggested a Markov Cluster (MCL) Algorithm

[16] that involves changing the values of a transition

matrix towards either 0 or 1 at every progression in a

random walk until the stochastic conditions are satisfied.

When the Hadamard power [17] for each transition

probability value is divided by the sum of each column,

the rescaling procedure yields a transition matrix for the

next stage. After repeating alternatively for around 20

times between two stages random walk and probability

modification, the procedure will, at last, achieve a
convergence stage in which the whole graph is subdivided

into a set of „hard‟ clusters. The benefits of the algorithm

are (i) it is not misled by edges linking different clusters;

(ii) it scales well with increasing graph size; (iii) it has a

natural parameter for influencing cluster granularity. The

limitations of the algorithm are (i) it cannot find

overlapping clusters (ii) it is not suitable for clusters with a

large diameter.

Han et al. described normalization which is one of the data

transformation methods in data preprocessing [18]. An

attribute of a dataset is normalized by scaling its value so

that they fall within a small range, such as 0.0 to 1.0.
Normalization may improve the accuracy and efficiency of

mining algorithms in classification and clustering. There

are numerous methods for data normalization that include

min-max normalization, z-score normalization and

normalization by decimal scaling.

III. PROPOSED APPROACH

The proposed approach consists of two phases. In the first

phase complete graph model of the software design is built

by extracting software entities (i.e. classes, abstracts, and
interfaces) and relations directly from source code. The

model graph obtained is a directed weighted graph. These

graphs are regenerated as undirected weighted graph by

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 7, July 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3724 124

removing the directions of the edges. In second phase

software clusters are generated from the graph produced in
the first phase. Authors have suggested a new graph

partitioning algorithm by adopting few features of MCL

algorithm. In this algorithm symmetric matrix M is formed

by combining adjacency matrix and degree matrix of G.

The Min-Max normalization technique is applied to matrix

M for transforming the data to a specified small range. The

algorithm consists of two main operations namely

unfolding and boosting which are implemented on the

normalized matrix. These operations are repeated

alternatively until stable steady matrix is reached. Finally

the clusters are interpreted from stable matrix S (i, j),
where 1 ≤ i ≤ n, 1 ≤ j ≤ n, and n is number of vertices. For

the rows having the value one, the corresponding j indices

are taken into one group called cluster. Thus in this way

the clustering are interpreted from the stable matrix. Fig. 1

shows the block diagram of the proposed approach UB-

GPA and Fig. 2 depicts the UB-GPA flow.

Fig.1 Block Diagram for Proposed approach UB-GPA

Fig.2 Flow of the UB-GPA Algorithm

A. Phase 1: Developing of Class-Oriented Model Graph

The developed software model graph is a simple directed

weighted graph. Essential information such as system
entities and associations are directly extracted from C#

source code by parsing the abstract syntax [19]. The

vertices of the generated graph are classes, abstract and

interface. The edges are the associations between the

entities. Association types in the graph are based on

associations of UML class diagrams. Normally there can

be more than one association between entities (classes,

abstracts, interfaces). Therefore to create a simple graph
all the parallel edges are merged into one single edge. The

feasible association types between classes are (i) Extend

association X, where Class B is the base class of Class A,

(ii) Implement association I, where Class A implements

the interface of class B, (iii) Field type association A,

where Class A has a field type of Class B, (iv) Local

variable association L, where Class A method has a local

parameter with the type of Class B, (v) Parameter

association P, where Class A method has an input

parameter with the type of Class B, (vi) Return type

association R, where Class A has a method with the return
type of Class B, (vii) Method association M, where Class

A has a method calls to Class B.

An object-oriented system can be represented as a digraph

G (V, E, Lv, Le, v, e) where V is a set of vertices (classes),

E is a set of edges (associations), Lv is a set of labels for

vertices, Le is a set of labels for edges. v is a mapping from

V→ Lv, e is a mapping from E→ Le Assigning weights to

edges according to their strengths of the associations will

improve the performance of the approach and enhance the

quality of the detection results by reducing the ratio of the

false positive detections.

The obtained software model graph is directed weighted
graph. In this paper, authors propose a new graph

partitioning algorithm approach that supports undirected

graphs. So, the obtained directed weighted graph is

regenerated as the undirected weighted graph by removing

the directions of the edges. Fig.3 shows the creation of

undirected weighted software model graph with parallel

edges and without parallel edges (i.e. if any subgraph

contain XY and Y X then it considered as the XY

and combining their edge weights).

Fig.3 Creation of undirected weighted software model

graph

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 7, July 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3724 125

B. Phase 2: Generating clusters by unfolding and boosting

operations
The input for the second phase is an undirected weighted

graph G, unfold parameter „m‟ and boost parameter „b‟.

From the input graph G, an adjacency matrix A is created

and is represented as A= [aij], where aij is the weight of the

edge eij. Degree matrix D of G is found, which is

represented as D= [dij] and is defined as

dij =
 aik

n
k=1 if i = j

0 otherwise
 (1)

From adjacency matrix not possible to find proper clusters,

because the node value (i.e. M(1, 1), M(2, 2), ..) are zero

in the matrix. Degree matrix provides information of the

node which helps to get proper clusters. Adjacency and

Degree matrix of G are combined to obtain the symmetric

matrix M.
The resultant symmetric matrix M is normalized by Min-

max normalization technique for transforming the data to a

specified small range. The Min-max normalization maps a

value 𝑣 to 𝑣′ in the range [𝑛𝑒𝑤_𝑚𝑖𝑛𝐴 , 𝑛𝑒𝑤_𝑚𝑎𝑥𝐴] for the

attribute A, by computing

𝑣 ′ =
𝑃

𝑄
∗ [𝑛𝑒𝑤_𝑚𝑎𝑥𝐴 − 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴] + 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴 (2)

Where P= [v-minimum value of A] and Q= [maximum

value of A-minimum value of A]

In the proposed approach the minimum and the maximum

value of the column of a matrix M is taken and the new

range for the matrix is defined from [0, 1]. Thus the above

equation for the matrix M (i, j) can be written as

𝑣′ =
𝑋

𝑌
∗ 𝑛𝑒𝑤−𝑟𝑎𝑛𝑔𝑒_𝑚𝑎𝑥 − 𝑛𝑒𝑤−𝑟𝑎𝑛𝑔𝑒_𝑚𝑖𝑛 +

 𝑛𝑒𝑤_𝑟𝑎𝑛𝑔𝑒_𝑚𝑖𝑛 (3)

Where X = [v-min value of jth column], Y= [max value of

jth column – min value of jth column] and 1≤ j≤ n, n is

number of vertices

After normalizing the matrix two main operations, namely

unfolding and boosting are applied. These operations are

repeated iteratively until a convergence is reached i.e. until

a stable matrix is reached.

The Unfolding matrix MU is achieved via matrix squaring

and is defined as

MU=𝑀𝑖𝑗
′ = 𝑀𝑖𝑘𝑀𝑘𝑗

𝑚
𝑘=1 (4)

Where, m is an integer taken as 2. Clusters of large size
are formed with the higher value of m. This may lead to a

single cluster with no partitions and lower value of m (i.e.

m=1) may lead to the problem of multiplication. Therefore

m value is considered as 2.

The boosting is achieved by element square of the unfold

matrix 𝑀′ and element squared matrix is normalized. The

boosting operation on the present state is responsible for

both strengthening due to element squaring and weakening

due to normalizing. Therefore to control the extent of the
strengthening / weakening, boosting parameter b is

considered. The low boosting parameter is more prone to

yield smooth partitions.

MB=𝑀𝑖𝑗
′′ =

(𝑀𝑖𝑗
′)𝑏

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
 (5)

Where, b is an integer value taken as 2.

The unfolding and boosting operations are iteratively

repeated until it results in a stable state matrix. The stable

matrix is identified by comparing the result matrix

obtained and the previously result obtained are to be same

then it says that stable matrix is arise. Finally the clusters

are interpreted from stable matrix S (i, j), where 1≤ i ≤ n

and 1≤ j ≤ n, n is a number of vertices. For the rows

having the value one, the corresponding j indices are taken

into one group called a cluster. Thus in this way the

clusters are interpreted from the stable matrix. The key

benefits of the proposed UB-GPA algorithm are (i) Its
formulation is simple and elegant. (ii) It needs less < 20

number of iteration to produce a stable state. (iii) It

produces good clustering results and (iv) this approach is

applicable to detect the community structures in the dense

network. Illustration of the proposed UB-GPA algorithm:

Let us consider an undirected weighted graph shown in

Fig.4, which is an input for UB-GPA algorithm.

Fig.4. Undirected weighted graph

Initially an adjacency matrix A and degree matrix D for

the input graph are created. The symmetric matrix M is

obtained by combining an adjacency matrix A and Degree

matrix D as shown below

A=

0 1 3 1 0 0 0
1 0 1 1 1 0 0
3 1 0 0 0 0 0
1 1 0 0 0 0 0
0 1 0 0 0 1 1
0 0 0 0 1 0 0
0 0 0 0 1 0 0

D=

5 0 0 0 0 0 0
0 4 0 0 0 0 0
0 0 4 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 7, July 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3724 126

M=

5 1 3 1 0 0 0
1 4 1 1 1 0 0
3 1 4 0 0 0 0
1 1 0 2 0 0 0
0 1 0 0 3 1 1
0 0 0 0 1 1 0
0 0 0 0 1 0 1

The obtained matrix M is n× n symmetric matrix, which is

normalized within the new range between [0, 1] by using

min -max normalization method. The min max

normalization computation is done by using equation 3.

From the matrix M, first column elements are [5, 1, 3, 1, 0,

0, 0], where the maximum value is 3 and minimum value

is 0. The value of M (1, 1) i.e. 3 is normalized to ((5-0) /
(5-0)) * (1-0) + 0 = 1 and the value of M (2, 1) i.e. 1 is

normalized to ((1-0) / (5-0)) * (1-0) + 0 = 0.33.

Similarly computing for entire matrix, normalized matrix

MN is

1.00 0.25 0.75 050 0.00 0.00 0.00
0.20 1.00 0.25 0.50 0.33 0.00 0.00
0.60 0.25 1.00 0.00 0.00 0.00 0.00
0.20 0.25 0.00 1.00 0.00 0.00 0.00
0.00 0.25 0.00 0.00 1.00 1.00 1.00
0.00 0.00 0.00 0.00 0.33 1.00 0.00
0.00 0.00 0.00 0.00 0.33 0.00 1.00

On normalized matrix, unfold and boosting operations are

applied. The unfold operation is a simple matrix squaring

(i.e. MN × MN). Thus the unfold matrix MU is

1.60 0.81 1.56 1.13 0.08 0.00 0.00
0.65 1.32 0.65 1.10 0.67 0.33 0.33
1.25 0.65 1.51 0.43 0.08 0.00 0.00
0.45 0.55 0.21 1.23 0.08 0.00 0.00
0.05 0.50 0.06 0.13 1.75 2.00 2.00
0.00 0.08 0.00 0.00 0.67 1.33 0.33
0.00 0.08 0.00 0.00 0.67 0.33 1.33

The boosting operation is the matrix element squaring,

illustrating by taking the square of the first column

element of MU, that results with the values (5.19, 1.36,
3.16, 0.60, 0.01, 0, 0). Squaring is done for the remaining

columns of matrix MU resulting in a matrix as shown

below.

2.56 0.66 2.44 1.27 0.01 0.00 0.00
0.42 1.74 0.42 1.21 0.44 0.11 0.11
1.56 0.42 2.29 0.18 0.01 0.00 0.00
0.20 0.30 0.05 1.50 0.01 0.00 0.00
0.00 0.25 0.00 0.02 3.06 4.00 4.00
0.00 0.01 0.00 0.00 0.44 1.78 0.11
0.00 0.01 0.00 0.00 0.44 0.11 1.78

Boosting matrix MB is obtained by using again the same

min-max normalization method. Thus the resultant
Boosting Matrix MB is

1.00 0.38 1.00 0.84 0.00 0.00 0.00
0.16 1.00 0.17 0.81 0.14 0.03 0.03
0.61 0.24 0.94 0.12 0.00 0.00 0.00
0.08 0.17 0.02 1.00 0.00 0.00 0.00
0.00 0.14 0.00 0.01 1.00 1.00 1.00
0.00 0.00 0.00 0.00 0.14 0.44 0.03
0.00 0.00 0.00 0.00 0.14 0.03 0.44

The unfolding and boosting operations are repeated

alternatively on matrix MB until the matrix gets a stable

state. Finally a stable matrix MS is obtained as

 A B C D E F G

MS =

1 1 1 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

From the matrix MS the partitions are interpreted by

finding the number of ones in a row and combining the

corresponding indices into one group. Vertices A, B, C, D

are considered as one group or one partition, since all the

ones in the first row of MS correspond to the indices A, B,

C, D. Similarly vertices E, F, G belong to another group

forming partition 2 which was depicted in Figure 5.

Fig. 5 Interpreted graph partitions from stable matrix

Algorithm: Unfolding and Boosting Graph Partitioning

Algorithm (UB-GPA)

Input: Software model graph G, unfolding parameter „𝑚‟,

boosting parameter „𝑏‟

Output: Software partitions

Step 1: Create an adjacency matrix A of G
Step 2: Find the degree of the matrix D of G

Step 3: Combine the adjacency and degree matrix to form

a symmetric matrix M i.e. M = D+A

Step 4: The symmetric Matrix M is normalized MN using

min-max normalization technique.

Step 5: Apply simple matrix multiplication MN×MN to

obtain unfolding matrix MU.

Step 6: Apply element squaring for obtain unfolding

matrix and min-max normalization for the element squared

matrix to obtain boosting matrix MB.

Step 7: Repeat step 4 and step 5 until a stable state matrix
MS is obtained.

Step 8: Finding the number of ones in a row and combine

all the indices into one group to form a cluster from stable

matrix generated in step 7.

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 7, July 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3724 127

IV. RESULTS AND DISCUSSION

In the result analysis, three different software model

graphs are considered (Chatzigeorgiou et al., 2006;

Xanthos, 2006). Table 1 gives the descriptive information

about experimented software systems. In particular, first

column shows different software model graphs. The

second and third columns show the number of vertices and

edges in the undirected graph (i.e. software model graph).

TABLE I DESCRIPTION OF THE SOFTWARE MODEL GRAPH

Software graph data |V| |E|

Software model graph 1 10 10

Software model graph 2 12 12

Software model graph 3 12 17

For each software model graph, the experimental analysis
is done with three different approaches namely proposed

UB-GPA, MCL Algorithm and spectral partitioning

algorithm. Spectral partitioning algorithm is used in the

experimental analysis of UB-GPA to show that the results

obtain by the proposed UB-GPA are same as obtained by

Spectral partitioning algorithm.

Fig.3 illustrates an example for UB-GPA, it takes 12

iterations to get stable state matrix, whereas MCL

algorithm requires 9 iterations. MCL require less iteration

count but having an overlapping of clusters. The proposed

approach needs 3 more iterations to get stable matrix when
comparing with the MCL. Here spectral partitioning

algorithm is considered for justification of the obtained

output is true for the UB-GPA algorithm.

Results of software model graph 1:

It is observed that software model graph 1 is partitioned

into three clusters with the disconnected edges are 7-3

with weight 2 and 7-8 with weight 3.

Fig.5 Partitions of software model graph 1 a) UB-GPA

Algorithm b) MCL Algorithm c) Spectral partitioning

algorithm

There is no overlapping of clusters in all the three

algorithms. The results of software model graph 1 are
shown in Fig.5.

Results of software model graph 2:

It is observed that software model graph 2 is partitioned

into three clusters with the disconnected edges are 1-9

with weight 2 , 1-3 with weight 3 and 1-5 with weight 1.

There is no overlapping of clusters in UB-GPA algorithm

and Spectral partitioning algorithm. In MCL algorithm

there is an overlapping of cluster1 and cluster 3 with

vertex 9. The result of software model graph 2 is shown in

Fig.6.

Fig.6 Partitions of software model graph 2 a) UB-GPA

Algorithm b) MCL Algorithm c) Spectral partitioning

algorithm

Results of software model graph 3:

It is observed that software model graph 3 is partitioned

into two clusters with the disconnected edges are 6-7 with

weight 1 and 2-7 with weight 1. There is no overlapping of

clusters in UB-GPA algorithm and Spectral partitioning

algorithm. In MCL algorithm there is an overlapping of

cluster1 and cluster 2 with vertices 7, 8 and 9. The result

of software model graph 3 is shown in Fig.7. The

summary table can be viewed in Table II.

Fig.7 Partitions of software model graph 3 a) UB-GPA

Algorithm b) MCL Algorithm c) Spectral partitioning

algorithm

TABLE III SUMMARY TABLE OF THE RESULT

Hypothetical

graph data

UB-GPA Algorithm MCL Algorithm
Spectral partitioning
Algorithm

Partitions
Over

Lapping
Partitions

Over

lapping
Partitions

Over

lapping

Software

model graph 1

P 1 {1, 2, 3,4 }

P 2 {5,6,7}

P 3 {8,9,10 }

No

P 1 {1, 2, 3,4 }

P 2 {5,6,7}

P 3 {8,9,10 }

No

P 1 {1, 2, 3,4 }

P 2 {5,6,7}

P 3 {8,9,10 }

No

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 7, July 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3724 128

Software

model graph 2

P 1{1,2,3}

P 2 {4,5,6,7,8 }

P 3 {9,10,11,12 }

No

P 1 {1, 2, 3, 9 }

P 2 {4,5,6,7,8 }

P 3 {9,10,11,12 }

Yes

P 1{1,2,3 }

P 2{4,5,6,7,8 }

P 3 {9,10,11,12 }

No

Software
model graph 3

P 1 {1,2,3,4,5,6 }

P2 { 7,8,9,10,11,
12}

No

P 1 {1, 2, 3, 4, 5, 6, 7,

8 ,9 }
P 2 { 7,8,9,10,11, 12}

Yes

P 1 {1,2,3,4,5,6 }

P2 { 7, 8, 9,10,
11, 12}

No

V. CONCLUSION

In this paper, a new graph partitioning approach is
suggested namely Unfolding and Boosting- based Graph

Partitioning algorithm (UB-GPA). The main objective is

to implement UB-GPA algorithm to provide the best

partitions for an object oriented system. This can be

achieved by two main operations, one is simple matrix

multiplication is called unfolding and another one is

squaring the elements of the unfold matrix and

normalizing the element squared matrix to the range [0, 1].

These operations are repeated alternatively to achieve a

stable matrix state to form clusters. The suggested UB-

GPA algorithm was examined on three different software
model graphs. The stable matrix is occurred with low

iterations while comparing with MCL algorithm iterations

and it is observed that the suggested UB-GPA algorithm

does not produce any overlapping groups/partitions. The

results obtained were compared with existing spectral

partitioning algorithm and are found to be same. Authors

would like to come up with real time applications and find

an optimal solution for software systems.

The outcome of UB-GPA algorithm can have multiple
uses. 1) The partitions that are found can be utilized as

reverse engineering process of the software system. 2) The

partitions can be used for identification of design patterns.

3) The identified design patterns are transfer easily and

utilized it in another system (reusability). 4) The partitions

can show some design structures like common structures,

copy past structures and circular dependency structures.

REFERENCES

[1] R.. Agrawal, J. Gehrke, D. Gunopulos and P. Raghavan,

“Automatic subspace clustering of high dimensional data for data

mining applications,” In Proceedings of the ACM-SIGMOD

International Conference Management of Data, Ashutosh Tiwary

and Michael Franklin (Eds.), ACM, New York, NY, USA, 1998,

pp.94-105.

[2] D. Gibson, J. Kleinberg, and P. Raghavan, “Inferring web

communities from link topology,” In Proceedings of the ninth ACM

conference on Hypertext and hypermedia : links, objects, time and

space---structure in hypermedia systems: links, objects, time and

space---structure in hypermedia systems (HYPERTEXT). ACM,

New York, NY, USA, 1998; pp. 225-234.

[3] R. T. Ng and J. Han, “Efficient and effective clustering method for

spatial data mining,” In Proceedings of the 20th International

Conference on Very Large Data Bases (VLDB), Jorge B. Bocca,

Matthias Jarke, and Carlo Zaniolo (Eds.). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1994; pp. 144-155.

[4] D. A. Bader, H. Meyerhenke, P. Sanders, D.Wagner, “Graph

Partitioning and Graph Clustering,” 10th DIMACS Implementation

Challenge Workshop February 13-14, 2012, Georgia Institute of

Technology, Atlanta, GA. Contemporary Mathematics 588,

American Mathematical Society and Center for Discrete

Mathematics and Theoretical Computer Science, 2013.

[5] S. E. Schaeffer, “Graph Clustering,” Computer Science Review,

2007, pp. 27-64.

[6] S. Xanthos, “Clustering Object-Oriented Software Systems using

Spectral Graph Partitioning,” In Proccedings of ACM Student

Research Competition, Grand Finals, Second Award. 2005.

[7] A. Chatzigeorgiou, N.Tsantalis and Stephanides, “Application of

Graph Theory to OO Software Engineering,” In Proceedings of

international workshop on workshop on interdisciplinary software

engineering research, ACM New York, NY, USA, 2006; pp. 19-36.

[8] M. Shtern and V. Tzerpos, “Clustering methodologies for software

engineering,” Advances in Software Engineering, January 2012,

Vol. 2012, Article 1, 18 pages.

[9] G. Czibula and G. Serban, “Hierarchical Clustering for Software

Restructuring,” Babes Bolyai University, Romania, 2007;

[10] W. E. Donathand A. J. Hoffman, “Lower bounds for the

partitioning of graphs,” IBM Journal of Research and Development.

1973, Vol.17, pp. 420-425.

[11] M. A. Fiedler, “property of eigenvectors of nonnegative symmetric

matrices and its application to graph theory,” Czechoslovak

Mathematical Journal. 1975, Vol. 25, pp. 619-633.

[12] M. Fiedler. “Algebraic connectivity of graphs,” Czechoslovak

Mathematical Journal, 1973, Vol. 23, pp. 298-305.

[13] B. Hendrickson and R. Leland, “An improved spectral graph

partitioning algorithm for mapping parallel computations,” SIAM

Journal on Scientific Computing, 1995, Vol. 16, pp.452-469.

[14] A. Pothen, H. D. Simon and K. P. P. Liu, “Partitioning sparse

matrices with eigenvectors of graphs source,” SIAM Journal on

Matrix Analysis and Applications, 1990, pp. 11, 1-30.

[15] S. Barnard and H. Simon, “A fast multilevel implementation of

recursive spectral bisection for partitioning unstructured problems,”

Concurrency: Practice and Experience, 1994, Vol 6, pp.101-117.

[16] S. V. Dongen. Graph clustering by flow simulation. PhD thesis,

University of Utrecht, Netherland.

[17] R. Reams, “Hadamard inverses, square roots and products of almost

semi definite matrices,” Linear Algebra and its Applications, 1

February 1999, Vol. 288, pp. 35-43

[18] Han, M. Kamber (2006) „Data Preprocessing‟, Data Mining

Concepts and Techniques, Morgan Kaufmann Publishers, an

imprint of Elsevier, pp.105-140.

[19] A. S. Muttipati and P. Padmaja. “Construction of Software Model

Graph and Analysing Object-Oriented Program (C#) Using

Abstract Syntax Tree Method,” International Journal of Computer

Science and Information Technologies, 2015, Vol. 6, pp. 3288-

3293.

